VVUnity
The VVAudio Unity 3D Audio System

The VVAudio Unity 3D Audio System includes a demo project containing a set of
scripts and libraries that are meant for a developer to use in their own projects.

VVUnityDemo

The VVUnityDemo project contains a Google Cardboard application designed to
demonstrate VVAudio’s Unity 3D Audio System. There are four simple objects
which represent four audio sources playing a string quartet (Bach, Preludes and
Fugues, Book 1, Fugue 24). After a few seconds they begin to move, illustrating the
smooth changes localization as the distance and angle change.

The demo GUI has controls for overall rendering as well as the details of the
synthetic binaural process. There is also a control which can make the objects move
silly fast, which demonstrates fractional sample, distance-based delays naturally
creating doppler effects.

Scripts

In order to use VVAudio’s Unity Audio System, you must copy the following scripts,
as well as VVDSP.dIl to your project Assets folder. You may optionally copy the
appropriate VVUnityPlugins packages into the Assets/Plugins folder.

VVListener

There should be a single instance of the VVListener script in a scene, usually
attached to the main camera. This script is the central controller for the others. In
addition to doing the ambisonic rotation and decoding and bringing the ambisonic
busses back into the Unity audio chain, VVListener also sets the parameters for all
the spatializers in a scene.

Native libraries are available on some platforms as described below. Use native will
be off by default if they are not available.

Use Native True use native c++ if available

Libraries? False use script regardless

Render type controls the conversion of the final ambisonic mix to stereo.

Render Type | XY A simple, non-binaural ambisonics
decoder




Synth5 Linear ambisonic decoder combined
with synthetic HRTFs (script only)

Synth16 Parametric ambisonics decoder
combined with synthetic HRTFs (16
HRTFs, native only)

Listen1025-16 Parametric ambisonics decoder
combined with measured HRTFs (16
HRTF’s, native only)

Listen1025-4 Parametric ambisonics decoder
combined with measured HRTFs (16
HRTF’s, native only)

Spatialize Mode overrides how the VVSpatializer scripts encode signals. An all
ambisonic mix can be useful to limit CPU use or to ensure speaker compatibility.

Spatializer Mode Binaural A mix of binaural and ambisonics, based
on distance

Ambisonic | Ambisonics only, regardless of distance

The following parameters control the room response.

Room Width, Control the early echos in different directions

Length & Height

Reverb Size Controls the length of the reverb tail, following the
early reflections

Reverb Gain Sets the gain of the room response return to the main b-
format bus

Forward emphasis is a central control for all spatializers. It is applied to both
binaural and ambisonic signals. This control can be used to help disambiguate front
and back sounds.

Frontal Emphasis Controls the degree to which rear sounds are
attenuated

The next set of parameters control the synthetic binaural HRTFs used at several
places in the signal chain. These controls can be used to customize the binaural
experience for a given user.

Head Size Controls the delay between left and right

Ear Size Controls the frequency of pinnae effects

Torso Size Controls the frequency of low frequency effects




VVSpatializer

The VVSpatializer script should be attached to an Audio Source. It will intercept the
Unity audio chain and send the result to either the ambisonic or binaural buss. The
spatializer implements fractional sample delay, linear or log distance falloff, forward
emphasis, and a combination of binaural and ambisonic panning.

Is Object? True Binaural and/or ambisonics,
depending on distance (see d1-d4)
False Ambisonic panning
Object Number Each audio object should be given a different object
number

Each VVSpatializer has four distance parameters that control rendering as follows:

Distance <d1 Binaural

d1lto d2 Fade from binaural to ambisonic

d2 to d3 Ambisonic

d3 to d4 Fade out

> d4 Off, minimal CPU use

Note that the following should be true: d1<d2<d3<d4. To make an object always
binaural set d1 (and therefore d2-4) greater than any distance used. (Currently
limited to 20 meters)

Note that, since ambisonics output requires four channels and Unity only passes
two, only the binaural outputs are available to send to a mixer group. That part of a
source that goes to ambisonics only shows back up at the listener.

VVAmbiClip

The VVAmbiclip script should be attached to an Audio Source containing a four
channel B-format clip. Since Unity doesn’t send all four channels down the audio
chain, this script reads the clip data directly and sends it to the ambisonics bus for
later rotation and rendering by the listener. Since it run only when the audio source
it is connected to runs, playback can be controlled normally at the audio source.

Ambisonic clips can optionally send to the second B-format bus for static, non-
rotated sounds. An example might be background music that should not be rotated
with head motion.

Is Static? True Sent to second B-format bus which is
not rotated
False Sent to first B-format bus which gets
rotated with head movement




VVScaler

VVScaler is a small script that intercepts the audio stream just to measure its
volume then scales the object it is attached to from .5 to 1.5 times it original size
from -60 to 0 dB. Note that this script reads the scale once at startup so it will not
interact well with other scripts that change the scale.

Busses
There are three internal busses used by the VVUnity scripts:

B-format Bus 1
This is the main ambisonic bus that is rotated by head movement and decoded.

B-format Bus 2

This bus does not get rotated before decoding. It is meant for background music or
other sound elements that should stay static with relation to the listener.

B-format Reverb Bus

An ambisonic mix that is fed into the room response unit. The results of this are
then mixed with the other B-format busses before rendering. The room response is
rotated with the listener.

Native vs. Script

All functionality is available in pure script for and thus should be compatible with all
platforms. VVUnityDSP.dll is a cross platform C# library for this purpose. There are
currently native libraries for OSX and Windows called VVUnityPlugins.bundle and
VVUnityPlugins.dll respectively. The native libraries offer better performance and
more sophisticated ambisonic to binaural decoding.

Performance

The use of CPU can be carefully managed. Most important is the use of native
libraries as described for VVListener above. OSX and Windows are available now.
Android and i0S versions will be developed, of course.

Next, the binaural rendering of objects takes much more CPU than simple ambisonic
panning. This is controlled primarily by setting an audio source to be an object and
thus potentially binaurally rendered, or not an object and thus always ambisonically
panned. Then, for those sources that are objects, there is a distance formula that
will further manage CPU use. After objects are faded to ambisonics, past d2, the CPU
use will be much lower, then after d4 it will stop processing completely.

Last in the signal chain, but potentially a CPU hog, is ambisonic to binaural decoding.
The XY decoder is very fast and good enough for some purposes. The SynthSquare
decoder (only in script right now) is the next most CPU intensive, but gives some



binaural rendering of the b-format busses. The native Synth16 and Listen1025-16
decodes are by far the most intensive. The Listen1025-4 is somewhere in between.

Speaker Compatibility

The XY ambisonics decoder is not binaural and thus is compatible with speaker
(instead of headphone) output. To be completely speaker compatible, all
spatializers should be switched to ambisonics as well using the control on
VVListener.



